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Abstract

Transformations of the systems of equations of the first approximation of the classical and generalized Chapman–Enskog methods
are proposed for those terms of the distribution functions by means of which one can calculate the vector transport relations for
mixtures of polyatomic gases, connecting the diffusion and heat fluxes and gradients of the scalar gas-dynamic variables. The
solutions of the transformed systems are expressed in terms of diffusion rates and gradients of the macroparameters. The derivation
and formulae for the coefficients of the Stefan–Maxwell relations and their generalizations are simplified, and rigorous results
for the matrices of the transport coefficients are established. Approximate vector transport relations are given for mixtures of
non-equilibrium reacting polyatomic gases.
© 2007 Elsevier Ltd. All rights reserved.

The kinetic theory of the transport properties of mixtures of ideal gases (which obey the Clapeyron-Mendeleyev equa-
tion of state) is most developed for the case of structureless (monatomic) particles.1 When using the Chapman–Enskog
method, the linearization of the system of Boltzmann kinetic equations with respect to the locally Maxwell distribu-
tion functions gives a system of linear non-homogeneous integral equations for the perturbations of the distribution
functions �i, which define the form and features of the vector transport relations in the Navier-Stokes approximation.
On the basis of these integral equations, the reasons for the effectiveness of their approximate solution are established
using sections of series in Sonin polynomials, and the Onsager symmetry relations are proved. In the representation,
called below the d-representation, the perturbations �i are given1 by linear functions of the temperature gradient �T
and diffusion thermodynamic forces dj (i, j = 1, 2, . . ., N, where N is the number of components of the mixture). For
diffusion velocities Vi and a heat flux q this representation is called “fluxes in terms of thermodynamic forces”.2–4

For gas-dynamic calculations it is more effective, however, to write di and q in terms of �T and Vj.2–4 The
expressions for the diffusion thermodynamic forces di in terms of Vj and �T are called the Stefan–Maxwell relations.
Their derivation by inverting the formulae for Vi in the d-representation leads to complex expressions for the transport
coefficients, and the complexity increases as the number of terms of the expansions in Sonin polynomials taken into
account increases, which is necessary in a number of cases.2–4 A cardinal simplification of these expressions is obtained
by methods based on approximate solutions of systems of equations for the perturbations �i in the form of series in

� Prikl. Mat. Mekh. Vol. 71, No. 2, pp. 301–320, 2007.
E-mail address: flumec@progtech.ru.

0021-8928/$ – see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2007.06.010

mailto:flumec@progtech.ru
dx.doi.org/10.1016/j.jappmathmech.2007.06.010


270 V.S. Galkin / Journal of Applied Mathematics and Mechanics 71 (2007) 269–286

polynomials: the transformation of systems of linear algebraic equations for the coefficients of the expansion in Sonin
polynomials2,3 and the use of expansion in Hermite polynomials.4 As a result, the thermodynamic forces �T and di

are expressed linearly in terms of the reduced heat flux and diffusion velocities. The advantages of this representation
of the thermodynamic forces in terms of fluxes was shown earlier in Refs. 2–4.

Another way of modifying the classical Chapman–Enskog method is to introduce a new dependent variable �i

instead of �i using the formula

and to eliminate the diffusion thermodynamic forces di from the system of integral equations (here mi and Ci are the
mass and peculiar velocity of a particle of the component i, and k is Boltzmann’s constant). The dependent variables
�i and, consequently, �i are at once expressed in terms of �T, Vj (below this is called the V-representation for �i).
It is shown that the solution of the systems of integral equations for the functions �i in the form of series in Sonin
polynomials gives expressions, previously obtained in Ref. 2, for the coefficients of the vector transport relations, but
a sufficiently complete analysis of these transport coefficients in an exact formulation, as is usually done when using
the classical Chapman–Enskog method,1 is not given. It is important to bear in mind that the V-representation for �i is
also used to determine the boundary jumps of the macroparameters of mixtures of slightly rarefied gases on surfaces
with heterogeneous processes.5

In Section 1 we first give a brief description of the results of using the Chapman–Enskog method in the d-
representation for a mixture of polyatomic gases when there are no chemical reactions and when there is only a
slight deviation of the state of the mixture from a local Maxwell–Boltzmann state.6–8 The modification proposed
earlier in Ref. 5 is then extended to this case, and a more complete description of it is given; when using the systems
of integral equations obtained, the properties of the transport coefficients are determined (for a mixture of monatomic
gases this completes the results obtained earlier in Ref. 5). Solutions of these systems of equations in the form of
series in a binary system of polynomials are then obtained, and corresponding formulae are given for the transport
coefficients.

Section 2 is devoted to similar modifications of the generalized Chapman–Enskog method, intended for describing
the transport properties of mixtures of reacting molecular gases when there is a considerable nonequilibrium in the
internal degrees of freedom of the molecules.9–14 Particular attention is devoted to analysing the matrices of the transport
coefficients for one of the modifications. The inclusion of the inelastic collision cross-sections of the gas particles in
the generalized Chapman–Enskog method has, for the moment, a mainly formal character, and hence approximate
procedures (Section 3) are therefore important.

1. A slight departure from local equilibrium

The Chapman–Enskog method gives the correction

to the local Maxwell–Boltzmann distribution function

(1.1)

Here and everywhere henceforth i = 1, 2, . . ., N, � = 0, 1, 2, . . ., N(i), where N(i) is the number of excited levels of
the particles of component i, ni is the number of particles of chemical sort i per unit volume, mi and Ci = �i − � is
the mass and peculiar velocity of the i-th particle, v is the mean-mass velocity of the gas mixture, T is the temperature
of the mixture of molecular gases, calculated6–8 from the translational and internal energy of the particles, Ei� is the
internal energy of particles of sort i in the quantum energy state �, Si� is the statistical weight of state i�, and k is
Boltzmann’s constant. Chemical reactions are not considered. To simplify the notation we will omit the commas in the
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sets of subscripts, so that, for example, i� i, �. In the general case the subscript � is a finite set of subscripts, which
depend on the properties of the particles and the degree of excitation of the quantum levels (for example, � = �R�

(m)
V �e,

where �R, �
(m)
V and �e are the rotational, vibrational (mode m) and electron quantum energy levels respectively, and

m = 1, 2, . . ., q). For molecular low-temperature gases usually � = �R, while for ionized inert gases � = �e. In the case
of monatomic particles, the subscript � will be omitted.

The zero approximation (1.1) defines the gas-dynamic variables {ni(r, t), v(r, t), T(r, t)}, for which the
Chapman–Enskog method gives the closed system of conservation equations

(1.2)

where U is the internal energy of unit mass of the medium.
Expressions for the terms of the perturbation of the distribution function �

(k)
i� , k = I, II, III, include the diad CiCi,

the vector Ci and the scalar C0
i respectively. The first and third terms define the non-equilibrium contribution to the

pressure tensor, in this case equal to

Here � and ς are the coefficients of the shear and bulk viscosity respectively, I is the unit tensor and S is a tensor with
the components

where r1, r2 and r3 are the components of the radius vector.
Everywhere below we will consider only the term

which defines the vector transport relations.
The system of equations for �i� has the form

(1.3)

The linearized collision operator is given by the expression

(1.4)

The summation is carried out over all values of the subscripts

The prime denotes values after a collision, � is the differential scattering cross-section of molecules, characterizing
the probability density of the transfer (Ci, Cj, Ei�, Ej�) → (C′

i, C′
j, Ei�′ , Ej�′ ) and d� is an element of the scattering

solid angle, and when j = i the peculiar velocity of a particle Cj is replaced by Ci1. The diffusion thermodynamic force
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of component i is given by the formula

(1.5)

Fi = Fi(z, t) is the external force, referred to mi, r is the radius vector and t is the time. The dimensionless mean internal
energy of the molecules of component i

In the d-representation of the Chapman–Enskog method6–8 the solution of system of Eqs. (1.3), (1.4) is sought in
the form

(1.6)

i.e. the perturbations �i are expressed in terms of the thermodynamic forces �T, dj.

The vectors Ai�Ci, D
j
i�Ci satisfy systems of linear inhomogeneous integral equations i, k = 1, 2, . . ., N; � = 0, 1,

. . ., N(i)

(1.7)

(1.8)

Here 	ik is the Kronecker delta.
Conditions of uniqueness of the solution of the integral equations

(1.9)

which are a consequence of the determination of the mean-mass velocity, are imposed on the required functions.
When deriving the second term on the right-hand side of formula (1.6) and system of Eq. (1.8), the linear dependence

of the vectors di is taken into account. The condition that the solution of the problem of determining the vector Dk
i�Ci

should be single-valued gives the equality

(1.10)

which is obtained using a well-known procedure.1

Using expressions (1.6)–(1.9) we obtain the following expressions for the vector transport relations (i, j = 1, 2, . . .,
N):the diffusion velocity of component i

(1.11)
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and the total heat flux

(1.12)

The formulae for Vi and h correspond to the “fluxes in terms of thermodynamic forces” representation.2–4

Here 
′ is the partial thermal conductivity, and Dij and DTi are the diffusion and thermal diffusion coefficients of
the multicomponent mixture of molecular gases.

We will now consider a modification of the Chapman–Enskog method, the purpose of which is to obtain expressions
for the perturbations �i� in the V-representation, i.e. in the form of linear functions of the vectors �T, V. Extending
the approach proposed earlier in Ref. 5, we will introduce the new dependent variable �i� by the formula

(1.13)

By virtue of definition (1.11), the diffusion velocity Vi must satisfy the requirement

(1.14)

Multiplying Eq. (1.3) by miCi, we integrate over Ci and sum over �. We have

The operator Ri is defined by the formula

(1.15)

Eliminating di using the expression obtained, we reduce system of Eq. (1.3) to the form

(1.16)

The operator Ki� is given by the formula

(1.17)

taking definition (1.15) into account.
In view of the linearity we have

(1.18)

where �T
i� and �V

i� satisfy the following systems of equations respectively

(1.19)

(1.20)

The mathematical properties of systems of Eqs. (1.19) and (1.20) are analogous to the properties of the simpler
systems for the case of a mixture of monatomic gases.5 We will supplement the earlier comment in Ref. 5 on the
solvability of these systems by the following. In the classical Chapman–Enskog method1 the integral operators of the
systems of equations for the perturbations �i are self-adjoint, and the additional requirements imposed on the solution
make it unique. The left-hand side of Eq. (1.16) becomes self-adjoint when condition (1.14) is satisfied. In fact, suppose
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�̃i� is a certain function from the class of functions defined by this condition. Multiplying the operator Ki�(�) by �̃i�,
integrating over Ci and summing over �, we obtain

since the contribution of the second term on the right-hand side of formula (1.17) for Ki�(�) in this expression is equal
to zero in view of condition (1.14). As is well known, the operator Li�(�) is self-adjoint, with an eigenfunction of
this class �C

i� = �(r, t) · MiCi (the right-hand sides of Eqs. (1.19) and (1.20) are orthogonal to it). Consequently, the
same will apply to the operator Ki�(�). We will impose condition (1.14) separately on the particular solutions. We will
assume the arbitrary function � to be zero. We will write the solution of the system of Eq. (1.19) in the form

(1.21)

The functions �i� satisfy the system of equations obtained from system (1.7) when we make the replacement Ai� ⇒
�i�, Li� ⇒ Ki�, but instead of the first condition of (1.9) we now require that

(1.22)

This leads to a considerable simplification of the solution in the form of an expansion in polynomials.5

In the same way as before,1,5 it can be shown, taking the linear dependence of the vectors �iVi into account, that

(1.23)

The functions �j
i� satisfy the following system of equations

(1.24)

The form of the right-hand side of Eq. (1.24) denotes that the difference ′
i + ′

j − i − j occurring in the integrand
of the operator Ki�() is replaced by the expression in braces. The law of conservation of momentum of colliding
molecules

(1.25)

is used.
The condition for the solution to be unique is analogous to condition (1.22) (with �i� replaced by �j

i�).
Instead of (1.10) the uniqueness condition here has the form5

(1.26)

Using the results obtained, we have for the reduced heat flux (see formula (1.12))

(1.27)

Here the thermal conductivity is

(1.28)
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while the thermal-diffusion ratio has the form

(1.29)

When deriving formulae (1.28) and (1.29) we used Eqs. (1.19) and (1.20), definitions (1.16) and (1.17), condition
(1.14), the self-adjointness of the operator Li�, and also a generalization of the well-known1 definition of a complete
integral bracket

where

The primes on the square brackets indicate partial integral brackets,1 and the quantity d� is defined by the second
formula of (1.4). The functions Mi� and Ji� are proportional to the vector Ci, and the coefficients of proportionality
depend on W2

i and �i�. The well-known property Li�(M) ∼ Ci is taken into account as above. The dots denote scalar
products of these functions.

Taking the formulae obtained and expression (1.15) into account, we obtain the Stefan–Maxwell relations

(1.30)

Equalities (1.25) and (1.26) respectively are used to calculate Ri() and Ri(�V); as a result, the first term on the right-
hand side of formula (1.30) is written in terms of Vj − Vi. The expression Ri(�T ) = −kTi∇ ln T follows, for example,
from the chain of equalities

(1.31)

The expressions in braces denote, for example,

The self-adjointness of the operator Li� is used when determining the transport relations (including in the chain of
equalities (1.31)).

Using formulae (1.27) and (1.30) and taking the last equality of (1.29) into account, we obtain the following
expressions in a representation previously called “thermodynamic forces in terms of flows” (Refs. 2–4)
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As is usually done,6–8,15 we will seek the functions �T
i� and �V

i� in the form of expansions in systems of polynomials

(1.32)

Unlike the d-representation in expansions (1.32) there are no terms with (r, q) = 0, proportional to the factors ai,00

and d
j
i,00, which simplifies the systems of equations for the coefficients of these expansions.

Relations for determining the Sonin polynomials S
(r)
3/2 are well known.1 The orthogonality relations for the Waldman-

Trubenbacher polynomials have the form: the quantity 〈P (m)P (n)〉 is equal to zero and 〈P (m)2〉 when m 	= n and m = n
respectively, and P(0) = 1, P (1) = 〈�i�〉 − �i�, etc. The following notation is used

The heat capacity at constant volume of the component i, due to internal degrees of freedom of the molecules, is
given by the expressions

The following formulae are obtained for the transport coefficients (1.28) and (1.29)

(1.33)

We substitute the expansions in polynomials into the integral equations for the required functions (1.32), we multiply
them scalarly by the product

we integrate over Ci and sum over �. We find, respectively,

(1.34)

(1.35)

where R and Q are the maximum indices of the polynomials considered.
It is important to emphasise that, when solving the problem in the form of series in polynomials, in the initial

systems of Eqs. (1.19) and (1.20) we can immediately replace the operators Ki� by the operators Li� (Ref. 5) and obtain
systems of equations with known properties.6 This is based on the fact that the expression obtained by multiplying the
second term on the right-hand side of formula (1.17) scalarly by Qrq

i�, integrating over Ci and summing over �, is equal
to zero.

The coefficients in Eqs. (1.34) and (1.35) are given by the expression

The approximate expressions for these coefficients, which are necessary in order to calculate the transport coefficients
in the lowest approximation in polynomials, were derived previously in Refs. 7,8,15. When deriving the expression
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for the right-hand side of Eq. (1.35) we used the equality

obtained taking the conservation law (1.25) into account. By virtue of this law, we also have

The last equality, which is obtained by summing Eq. (1.35) over h, shows that condition (1.26) is satisfied for system
(1.35).

Unlike the analogous systems of equations of the d-representations,6–8 systems of Eqs. (1.34) and (1.35) are linearly
independent, since they do not contain equations corresponding to values of the indices r and q equal to zero.

Taking the above relations into account, we obtain the following equation for the factor �ij in the Stefan–Maxwell
relation (1.30)

(1.36)

where

(1.37)

In formula (1.36) the coefficients d
j
h, rq are the solution of the system of linear algebraic Eq. (1.35). The coefficient

of binary diffusion of molecular gases �ij in the lowest approximation in polynomials, like the remaining transport
coefficients, depends on the elastic and inelastic collision cross-sections. In the case of a mixture of monatomic gases,
formula (1.37) defines the binary diffusion coefficient in a first approximation in Sonin polynomials.

The solutions of systems of linear algebraic Eqs. (1.34) and (1.35) and then formulae for the transport coefficients 
,
kTi and �ij can be written in terms of determinants. For a mixture of monatomic gases, the relations obtained are identical
with the well-known relations,2–4 apart from the notation. In books on the kinetic theory of transport phenomena in
polyatomic gases,7,8,15,16 no expressions are given for the transport coefficients in terms of determinants. This is due
not only to their complexity and the availability of computer mathematics. Effective algorithms for calculating these
systems, based, in particular, on the iteration method,7,8 are used instead of Cramer’s rule.

A formula for �ij was obtained earlier in Refs. 7,8 in the lowest approximation in polynomials.

2. An arbitrary departure from local equilibrium with respect to internal degrees of freedom of molecules

In flows of high-temperature polyatomic reacting gases there are, generally speaking, regions with different levels
of excitation of the internal degrees of freedom of the molecules. To describe these regions, the appropriate gas-
dynamic models hold, and a continuous calculation of the whole field of flow can be carried out using the system of
general equations of physico-chemical gas dynamics – equations with level kinetics over all the quantum levels of the
molecules. It includes the system of equations for the populations

and the equations of momentum and energy, i.e. the second and third equations of (1.2), where now

The vector transport relations and the quantity U are given by more complex expressions.
To derive this system of general equations of physico-chemical gas dynamics, a generalized Chapman–Enskog

method has been developed.9–13
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Instead of system (1.3) for the perturbations �
(II)
i� �i�, in the generalized Chapman–Enskog method there is a system

of integral linear inhomogeneous equations

(2.1)

where

(2.2)

In the above expressions f
(0)
i is the locally Maxwell distribution function for the component i, LS

i�(�) is the linearized
symmetrized collision operator, ni� is the number of particles of sort i in the quantum state � per unit volume (the
population of the quantum state � of particles of sort i), Vi� is the diffusion velocity of the component i�, Ṅi� is the
production of particles of sort i in quantum state � as a result of transitions between energy levels and as a result of
chemical reactions, Tt is the translational temperature of the reacting mixture of ideal gases, the quantities ni and Ci

are defined in Section 1, yi� is the relative population, and

(2.3)

The quantity di is defined by formula (1.5) with the replacement T ⇒ Tt. The vectors �yi� are linearly dependent

(2.4)

In the approximation of this method employed, the distribution function is

By definition, it is the mathematical expectation of the number of particles of chemical sort i, which possess internal
energy Ei�, in an element of phase space d�i. This number of particles is

In Section 1 we use the same definition, but the relative population yi� there is the Boltzmann distribution. The
collision operator LS

i� is self-adjoint, and, taking into account bimolecular chemical reactions (2 � 2), it is given by
the expression9

(2.5)

As above, the primes denote quantities after a collision, and the quantum states are denoted by Greek subscripts. If
a particle of sort i does not react, the subscripts k′ and l′ are replaced by i and j, and the summation is carried out over j,
�, �′ and 	′. If they react, the same replacement is made in the terms of the operator (2.5), describing the collisions of
particles of sort i with non-reacting particles. Collision operators for more complex chemical reactions are also given
in Refs 7,8,16,17. Linearization and symmetrization of these operators was also carried out previously in Ref. 14.
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In this paper we will not consider the version of the method in which the non-self-conjugate integral operator Li� is
used.17 The difference between the versions of the generalized Chapman–Enskog method9–13 is characterised by the
procedure for calculating the perturbations �

(III)
i� , which depend on the modulus of the vector of the peculiar velocity

of a particle Ci. When determining the transport relations in the asymptotically principal approximation with respect
to small Knudsen numbers, this difference disappears, and we can require all the gas-dynamic variables to be given by
the zero approximation

As a result of solving system of equations (2.1) we find that the perturbation �i� and, consequently, the diffusion
velocities Vi� and the heat flux q are linear functions of the vectors �Tt, dj� (or �Tt, dj, �yj�):

(2.6)

Here Ech
i is the energy of the formation of a chemical element of sort i. In the modification of the method proposed

earlier in Ref. 14, instead of �i� a new dependent variable ϑi� was introduced, as given by the formula

and the quantities di� were eliminated from Eq. (2.1) and an expansion in Sonin polynomials was used. The complete
theory is constructed in the same way as was done in Section 1. The vectors di� and q are given by linear combinations
of the vector �Tt, Vj�.

We will consider another modification, which is more convenient for converting the general equations of physico-
chemical gas dynamics on changing to special cases.18 We introduce a new dependent variable �i�, analogous to
relations (1.13)

(2.7)

retaining the notation. We substitute the right-hand side of formula (2.3) into Eq. (2.1) instead of di�, then we use the
replacement (2.7), multiply by miCi, integrate over Ci and sum over �.

We obtain for the vector di

(2.8)

Eliminating di using this formula, we reduce Eq. (2.1) to the form

(2.9)

The operator KS
i� is given by expression (1.17) with Li� and Ri replaced by LS

i�, RS
i . The quantity Hi is defined by the

second relation of (2.1).
As in Section 1, we will assume the existence of a solution of the problem in the class of functions defined by

requirement (1.14). The analysis of system of Eq. (2.9) is similar to the analysis of system (1.16), taking into account
the linear dependence of the groups of vectors �yi� and �iVi. The solution will be sought in the form

(2.10)
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The second equation of (2.10) is a consequence of requirement (1.14). The functions �T
i�, �Y

i�, �V
i� satisfy the

following systems of equations

(2.11)

and are represented by the following expressions

(2.12)

The required functions Ãi�, Gh�
i� , D̃h

i� satisfy the following systems of inhomogeneous linear integral equations

(2.13)

where

When k = i, l = j and Tt = T we obtain the right-hand side of Eq. (1.24). The right-hand side of the last equation of (2.13)
is written for the case (2.5).

The solution of the problem for �Y
i� is constructed in the same way as indicated in Ref. 1. We will put bi� =�yi�.

Taking equality (2.4) into account, we introduce the following system of linearly independent vectors b∗
i� by the formula

We will represent the function �Y
i� by the sum −n−1

∑

h,�

Gh�
i� Ci · b∗

h�. Substituting it into the second equation of (2.11),

we find the second equation of (2.13). When it is multiplied by yh� and summed over h and � the right-hand side of
this equation vanishes. Without loss of generality we will assume

(2.14)

which enables us, in the sum for �Y
i�, to replace the vector b∗

i� by the vector bi�. Finally we obtain the required solution
in the form of the second formula of (2.12).

Similarly, we will write the solution for �V
i� in the form of a sum over the system of linearly independent vectors Bh

(2.15)

Using the last two equalities, the law of conservation of momentum of the colliding particles and definition (2.7),
we convert the difference

which occurs in the integrands of the right-hand side of the third equation of (2.11).
Substituting this expression and the first expression of (2.15) into the third equation of (2.11) and putting Dh

i� =
�hH

h
i�, we obtain the third equation of (2.13). On summing over h, its right-hand side vanishes, and hence, similar to
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relations (1.26) and (2.14), we assume

(2.16)

which enables us to replace Bh by �hVh in the first formula of (2.15) and to obtain an expression for �V
i� according to

the second equality of (2.12).
Using definitions (2.6), (2.7) and (2.10), we obtain for the vector transport relations

(2.17)

The last relations are given in a form which demonstrates crossover effects

(2.18)

The expressions for the coefficients in formulae (2.18) have the form

(2.19)

We have introduced the notation

The total integral bracket [. . .]S is defined in the same way as in Section 1.
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The procedures for obtaining the relations derived above are similar to the derivation of formulae (1.28) and (1.29).
We used the last expressions of (2.7), (2.10) and (2.11), formulae (2.12) and the first two equations of (2.13). The
self-adjointness of the operator LS

i� was taken into account. The specific form of the operator LS
i�() was not used, so

that the results (2.18) and (2.9) are general.
For example, we will express the quantity RS

i (�Y ) in terms of the coefficients DV
h�,i. By definition

(2.20)

We will put

and we will consider the expression � {iL
S
i�(Gh�)}, which can be written in the form

(2.21)

The quantity �h�
i is defined by the last formula of (2.20). On the other hand, in the same way as for (1.31) we obtain

the chain of equalities

Comparing the results obtained with definitions (2.20) and (2.21), we find

The last equality was used to derive the third formula of (2.18).
Hence, we have obtained relations (2.18) and (2.19) between the coefficients of the expressions for the vector

transport relations. We can use an expansion of the solution in series in polynomials, but the results obtained in this
way will have a formal form, since the cross sections of the physico-chemical processes are insufficiently well known,
whereas the purpose of this section is to provide rigorous results. In practice, approximate procedures are employed,
the results of which are considered in the next section.

We will change to a special case in formulae (2.18) and (2.19) by replacing the relative populations yi� by their
asymptotically principal expressions19 (for small Knudsen numbers). For example, in the case considered in Section
1, in the first formula of (2.17) the difference Vi� − Vi is eliminated, and then, in the expressions for q and di, the
variable yi� is replaced by the Boltzmann function, which occurs in formula (1.1), and the translational temperature Tt

is replaced by the temperature T.
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3. Approximate relations

In the procedure proposed earlier in Ref. 9, the internal degrees of freedom of the particles are split into two groups,
so that the subscript � = �1�2 �1, �2. On the left-hand side of Eq. (2.1) the linearized collision operators for the
�2-processes are assumed to be small; these, and also the collision operators which determine the chemical reactions,
are neglected. It is assumed that the energy of the particles and the collision cross-sections for the �1-processes are
independent of the �2-states of the particles, i.e. this energy is equal to Ei�1 , while for the cross sections and total
internal energy of the particle the following equalities respectively hold

(3.1)

In practice, one also usually neglects the collision operators for the �1-processes. In this case � �2, and only the
elastic-collision operators are taken into account. This leads to the non-equilibrium (generalized) Hirschfelder-Eucken
approximation,9,19 when the effect of the internal degrees of freedom of the particles on the transport relations is only
taken into account in terms of the diffusion of their internal energy. The structure of the expression for the pressure
tensor is not changed. The shear viscosity coefficients �, the reduced heat flux h̃ (see (2.17)) and the vector di (the
Stefan–Maxwell relation) are given by the corresponding expressions for an N-component mixture of monatomic
gases.1 The following formula holds

where �ij [�ij]I is the binary diffusion coefficient of monatomic gases in a first approximation in Sonin polynomials1

(the second approximation was also analysed earlier in Ref. 19). Data, characterizing the accuracy of the Eucken
correction to the thermal conductivity are given for a number of single-component polyatomic gases, for example, in
Ref. 20.

We will now take into account the collision operators for the �1-processes. In the generalized Chapman–Enskog
method the situations are considered, generally speaking, when the distribution function of the molecules over the
energy Ei�1 differs considerably from the locally equilibrium distribution. We will make an additional assumption
regarding the closeness of this function to the Boltzmann function, which holds, for example, for an important class
of flows,15,16 when the rotational levels relate to the �1-levels, and the vibrational and electronic levels relate to the
�2-levels. The distribution function of the zero approximation is given by the expression

(3.2)

Here and below � �1�2, ni�2 is the population of the vibrational and electronic levels of the particles of sort i,
and T is the temperature, determined taking into account the translational energy of the particles and their internal
energy Ei�1 . In the zero approximation (3.2), the gas-dynamic variables are ni�2 , v, T, which satisfy the momentum
and energy equations and also the system of equations

(3.3)

obtained by summing the overall system of equations of the populations ni� over �1.
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Following the procedure proposed earlier in Ref. 9, it can be shown that the perturbation of the distribution function
�

(II)
i� �i�, which determines the vector transport relations, is given by the following formula in the case considered

(3.4)

Expressions for the function �i�1
follow from relations (1.6)–(1.8) and from relations (1.13) and (1.21)–(1.24) by

replacing the subscript � by �1 in the d-representation and V-representation respectively. The effect of the i�2-levels
is characterized by the term with the factor Q. These factors satisfy the following system of equations

(3.5)

Here we have used the notation (3.1) for X and �.
The solution of system (3.5) is sought in the form of a series in the binary system of polynomials (1.32). Confining

ourselves to one term of the expansion, we obtain

(3.6)

where �ij is the binary diffusion coefficient of polyatomic gases, which is given by formula (1.37) with the replacement
� ⇒ �1 and depends on the elastic collision cross-sections and the cross-sections of the i�1-processes.

By virtue of solution (3.4), using the equality

we obtain the following results. The vectors Vi and di are given by formulae (1.11) and (1.13). We will write the total
heat flux vector in the form q = q1 + q2. The term q1 is calculated from formulae (1.12) or (1.27) (in the corresponding
expressions in Section 1 for the transport coefficients, the subscript � is replaced by �1). The effect of i�2-processes is
taken into account via the diffusion velocity Vi�2 (the definition is given by the second equality of (3.3)) and the term
of the heat flux q2

(3.7)

(3.8)

The quantity qi,00 is defined by relation (3.6). The corresponding expressions for the non-equilibrium Hirshfelder-
Eucken approximation follow from expressions (3.4), (3.5), etc., if we omit the subscripts �1, �1, etc. and put � �2.

Eq. (3.3), together with the momentum and energy equations, describe, in particular, flows with vibrational-chemical
relaxation, when the rotational levels belong to the quantum levels �1, and the vibrational levels belong to the quantum
levels �2 (the electron levels are frozen). Using the procedure described, expressions for the vector transport properties
are determined assuming that the rotational energy and the collision cross-sections of the molecules are indepen-
dent of the vibrational levels. These expressions in the d-representation were obtained previously using the modified
Chapman–Enskog method without these assumptions.15 In this method it is assumed that the operators describing the
excitation of the vibrational and chemical processes are asymptotically small together with the Knudsen number by
comparison with the operators for the i�1-processes.
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In the procedure based on the generalized Chapman–Enskog method, it is assumed that the effect of these operators
on the transport coefficients being investigated is small from the practical point of view, and they are neglected.
Consequently, the results of this section for the transport properties (and, in general, the results of the generalized
Chapman–Enskog method for such flows21–24) hold not only for the relaxation case, but also for states close to
quasi-stationary.

Suppose, for example, in the zero approximation (3.2), the relative population of the vibrational levels yi�2 is a
Boltzmann function of the vibrational temperature Tvi. Then, from system (3.3) we obtain a simpler system of equations
for the temperatures Tvi, and in expressions (3.7) and (3.8) the quantity yi�2 is replaced by this function of Tvi, so that
instead of ∇yi�2 we will have the gradients ∇Tvi.

In conclusion we emphasize that the generalized Chapman–Enskog method (Sections 2 and 3) hold for weak
translational non-equilibrium, when the state of the gas medium is close to locally Maxwellian. However, the non-
equilibrium of the internal degrees of freedom of the particles may be considerable. The mathematical theory of the
corresponding dynamic equations are at the stage of development. In Section 2 we indicated possible modifications
of the generalized Chapman–Enskog method, and the procedure employed was illustrated using one of these, when
the perturbation of the distribution function is expressed linearly in terms of the diffusion velocities of the chemical
components Vi and the temperature and relative-population gradients. This representation is convenient to use in the
problem of the Knudsen layer on surfaces with heterogeneous processes25 (for example, in evaporation-condensation26).
The properties of the transport-coefficient matrix have been proved, and a relation has been established between the
crossover effects. For applications it is important to develop simplified models of the transport relations. In Section 3
we gave examples of the use of an algorithm for the approximate solution of the integral equations of the generalized
Chapman–Enskog method.
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